2.2b nonlinear difference equations

Def 2.1 For the last difference equation / Ist-order system

$$
x_{t+1}=f\left(x_{t}\right), \quad X(t+1)=F(x(t))
$$

an equilibrium solution or steady-state solution is a constant solution \bar{x} to the difference equation. ie.

$$
\bar{x}=f(\bar{x}) \quad / \quad \bar{X}=F(\bar{x})
$$

\bar{x} and \bar{X} are fixed pts of respectively f or F.
Notation: Let $f^{t}\left(x_{0}\right)=\underbrace{f \circ f \circ \cdots \circ f}_{t \text { tres. }}\left(x_{0}\right)$. So, if $x_{6+1}=f\left(x_{t}\right)$, then $f^{t}\left(x_{0}\right)=x_{t}$
Ex Let $x_{t+1}=\frac{x_{t}}{2}+5$. Then $\bar{x}=10$ is a steady-state sol.

$$
\tau=f\left(x_{t}\right)=\frac{x_{t}}{2}+5
$$

Ex. Let $x(t+1)=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] x(t)$. Then $\bar{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is a steady -state so!

Def. 2.2 A periodic solution of period $m>1$ of a difference eq $x_{t+1}=f\left(x_{t}\right)$ is a real-valued sol \bar{x}_{k} satisfying

$$
f^{m}\left(\bar{x}_{k}\right)=\bar{x}_{k} \quad \text { and } \quad f^{i}\left(\bar{x}_{k}\right)=\bar{x}_{k} \quad \text { for } \quad i=1, \ldots, m-1
$$

An m-cycle is a set of pts $\left\{\bar{x}_{1}, \ldots, \bar{x}_{m}\right\}$ where $f\left(\bar{x}_{k}\right)=\bar{x}_{k+1}$ and each pt \bar{x}_{h} for $k=1, \ldots, m$ is a periodic solution of period m. The set $\left\{\bar{x}_{1}, f\left(\bar{x}_{1}\right), \ldots, f^{m-1}\left(\bar{x}_{1}\right)\right\}$ is the periodic orbit of \bar{x}_{1}. Similar definitions for a first-order system $\quad X(t+1)=F(X(t))$ Aside: If \bar{x}_{n} is a periodic solution to $x_{t+1}=f\left(x_{t}\right)$ of period m,

Aside: If \bar{x}_{n} is a periodic solution to $x_{t+1}=f\left(x_{t}\right)$ of period m, then \bar{x}_{k} is a fixed pt of $f^{m}, f^{2 m}, f^{3 m}, \ldots$ Aside: By def,, a solution of period m cant have period $k<m$.

Ex. Let $x_{t+1}=f\left(x_{t}\right)$, where $f(x)=-x$
Then $\bar{x} \in \mathbb{R}$ for any $\bar{x} \neq 0$ is a periodic solution of period?
Suppose $\bar{x}=0$. Then $f(0)=0$, so this a steady state equilibrium instead.
Ex. let $x_{t+1}=\frac{a x_{t}}{b+x_{t}}=f\left(x_{t}\right)$, $a, b>0$.
To solve for an equilibriven solution, solve $\bar{x}=\frac{a \bar{x}}{b+\bar{x}}$

$$
\begin{array}{r}
\Rightarrow \quad \begin{array}{c}
\bar{x}(b+\bar{x})=a \bar{x} \\
\bar{x}^{2}+b \bar{x}-a \bar{x}=0
\end{array} \\
\bar{x}^{\bar{x}}(\bar{x}+b-a)=0 \\
\Rightarrow \\
\underbrace{\bar{x}=0, a-b}_{\text {equilibrime }} \underbrace{}_{\text {solutions }}=
\end{array}
$$

Are there any 2 -cycles? Solve for $f^{2}(\bar{x})=f(f(\bar{x}))=\bar{x}$

$$
\begin{aligned}
& \Rightarrow f\left(\frac{a \bar{x}}{b+\bar{x}}\right)=\bar{x} \\
& \Rightarrow \frac{a\left(\frac{a \bar{x}}{b+\bar{x}}\right)}{b+\left(\frac{a \bar{x}}{b+\bar{x}}\right)}=\bar{x} \quad \Rightarrow a\left(\frac{a \bar{x}}{b+\bar{x}}\right)=b \bar{x}+\bar{x}\left(\frac{a \bar{x}}{b+\bar{x}}\right) \\
& \Rightarrow a^{2} \bar{x}=b^{2} \bar{x}+b \bar{x}^{2}+a \bar{x}^{2} \\
& \Rightarrow\left(a^{2}-b^{2}\right) \bar{x}-(a+b) \bar{x}^{2}=0 \\
& \\
& (a+b) \bar{x}(a-b-\bar{x})=0 \\
& \Rightarrow \quad \bar{x}=0 \text { or } \bar{x}=a-b
\end{aligned}
$$

But both of these actually have period I because they are equilibria that we fond earlier, so there are no $z-c y c l e s$.

Def. 2.3a An equilibrium solution \bar{x} of $x_{t+1}=f\left(x_{t}\right)$ is locally stable if $\forall \varepsilon>0, \exists \delta>0$ sit. if $\left|x_{0}-\bar{x}\right|<\delta$, then

$$
\left|x_{t}-\bar{x}\right|=\left|f^{t}\left(x_{0}\right)-\bar{x}\right|<\varepsilon \quad \forall t \geqslant 0 .
$$

If \bar{x} is not stable, then it is unstable.
Ex. $\quad x_{t+1}=\frac{1}{2} x_{t}$ has a locally stable equilibrium solution $\bar{x}=0$
Ex. $\quad x_{t+1}=2 x_{t}$ has a locally unstable equilibrium solution $\bar{x}=0$

Def. 2.3b An equilibrium solution \bar{x} of $x_{t+1}=f\left(x_{t}\right)$ is locally attracting if $\exists \gamma>0$ s.t. for all x_{0} s.t. $\left|x_{0}-\bar{x}\right|<\gamma$,

$$
\lim _{t \rightarrow \infty} x_{t}=\lim _{t \rightarrow \infty} f^{t}\left(x_{0}\right)=\bar{x}
$$

Ex. $\quad x_{t+1}=\frac{1}{2} x_{t}$ has a locally attracting sol $\bar{x}=0$.
Ex. $\quad x_{t+1}=2 x_{t} . \quad \bar{x}=0$ is nut a locally attracting so!
Def. 2.3 c The equilibrium solution \hat{x} is locally asymptotically stable if it is both locally attracting and locally stable,
Ex. $\quad x_{t+1}=\frac{1}{2} x_{t}$ has a locally stable attracting solution $\bar{x}=0$.

Important: It is possible to be locally attracting but not locally stable,
Ex. $f(x)=\left\{\begin{array}{cc}x+1, & \text { if } x<1 \\ 1, & \text { if } x \geq 1\end{array}\right.$

$x_{t+1}=f\left(x_{t}\right)$ has an equilibrium solution at $\bar{x}=1$
And it is locally attracting became $\lim _{t \rightarrow \infty} x_{t}=1$ for all initial conslitus. But let $\varepsilon=\frac{1}{2}$. Then for $\frac{1}{2}<x_{0}<1, x_{1}>\frac{3}{2}$, so $\left|x_{1}-1\right|>\frac{1}{2}$, so there is $10 \quad \delta>0$ that works.

Important: It is possible to be locally stable but not locally attracting
Ex. Let $X(t+1)=\underbrace{\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)}_{\text {rotation matrix }} x(t)$, where θ is the
Then $\bar{X}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is a locally stable equilibrium because if

$$
\|x(0)\|_{2}<r \text {, then }\|x(0)-\bar{x}\|_{2}<r
$$

But for any $X(0) \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]$, if will never converge to $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
These, it is not locally attracting,

Intuition:

Stable means that if a vector e starts within distance δ, it stays within dict ε

Attracts mems that in the lima, 't, if a trajectory starts with in dist Y, then it converges to the equilibrium.

