2.2b nonlinear difference equations Sunday, January 24, 2021 10:51 PM an equilibrium solution or steady-state solution is a constant solution \overline{x} to the difference equation. i.e. (\overline{X}) $\overline{x} = f(\overline{x})$ $\overline{\chi} = F(\overline{\chi})$ x and X are fixed pts of respectively f or F. Let $x_{t+1} = \frac{x_t}{2} + 5$. Then $\overline{x} = (0 \text{ is a steady-state sol.}$ $t = f(x_t) = \frac{x_t}{2} + 5$ Ex. Let $X(t+1) = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} X(t)$. Then $\overline{X} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is a steady-state sol, Def. 2.2 A periodic solution of period m>1 of a difference eq Xt+1 = f(xt) is a real-valued sol XK satisfying $f^{m}(\overline{x_{k}}) = \overline{x_{k}}$ and $f^{c}(\overline{x_{k}}) = \overline{x_{k}}$ for $\overline{c} = (j_{m}, m - 1)$ An m-cycle is a set of pts {x,,..., xm} where f(x)=x_{k+1} and each pt Xh for k=1,..., m is a periodic solution of period m. The set $2x_i$, $f(x_i)$, ..., $f^{m-1}(x_i)$ is the periodic orbit of x_i . Similar definitions for a first-order system X(f+1) = F(X(t)) Aside: If x_h is a periodic solution to $x_{t+1} = f(x_t)$ of period m,

Aside: If
$$\overline{\chi}_{k}$$
 is a periodic solution to $\chi_{k+1} = f(\chi_{k})$ of period m,
then $\overline{\chi}_{k}$ is a fixed pt of f^{m} , f^{2m} , f^{3m} , ...
Aside: By def., a solution of period m could have period $k < m$.
Ex. Let $\chi_{k+1} = f(\chi_{k})$, where $f(z) = -x$
Thun $\overline{\chi} \in \mathbb{R}$ for any $\overline{\chi} \neq 0$ is a periodic solution of period 2.
Suppose $\overline{\chi} = 0$. Then $f(0)=0$, so this a steady slate equilibrium period
Ex. Let $\chi_{k+1} = \frac{\alpha \times \epsilon}{1 + \chi_{k}} = f(\chi_{k})$, α , $b > 0$.
To solve for an equilibrium solution, solve $\overline{\chi} = \frac{\alpha \sqrt{z}}{b+z}$
 $= \frac{\chi}{\chi}(b+\overline{z}) = \alpha \overline{\chi}$
 $= \frac{\chi}{\chi}(b+\overline{z}) = \overline{\chi}$
Are there any $2 - \alpha_{1} / cb^{2}$. Solve for $f^{2}(\overline{\chi}) = f(f(\overline{\chi})) = \overline{\chi}$
 $\Rightarrow f(\frac{\alpha \overline{\chi}}{b+\overline{\chi}}) = \overline{\chi}$
 $\Rightarrow a(\frac{\alpha \overline{\chi}}{b+\overline{\chi}})$
 $\Rightarrow a(\frac{\alpha \overline{\chi}}{b+\overline{\chi}}) = \overline{\chi}$
 $\Rightarrow a(\frac{\alpha \overline{\chi}}{b+\overline{\chi}}) = \overline{\chi}$
 $\Rightarrow \alpha^{2} \overline{\chi} = b^{2} \overline{\chi} + b \overline{\chi}^{2} + a \overline{\chi}^{2}$
 $=) (\alpha^{2} - b^{2}) \overline{\chi} - (\alpha + b) \overline{\chi}^{2} = 0$
 $(\alpha + b) \overline{\chi}(\alpha - b - \overline{\chi}) = 0$
 $=) \overline{\chi} = 0$ or $\overline{\chi} = \alpha - b$

But both of these actually have period I because they are equilibria that we found earlier, so there are no Z-cycles Def. 2.3 a An equilibrium solution \overline{X} of $x_{f+1} = f(x_t)$ is locally stable if $\forall \epsilon > 0$, $\exists \delta > 0$ s.t. if $|x_0 - \overline{x}| < \delta$, then $|x_t - \overline{\chi}| = |f^t(x_o) - \overline{\chi}| < \xi \quad \forall t \ge 0.$ If X is not stable, then it is unstable. $X_{t+1} = \frac{1}{2} X_t$ has a locally stable equilibrium solution $\overline{X} = 0$ Ex. X +1 = 2×6 has a locally unstable equilibrium solution X=0 lef. 2.36 An equilibrium solution & of x +1 = F(x+1) is locally attracting $if \exists \gamma > 0 \quad s.t. \quad for \quad all \quad x_0 \quad s.t. \quad |x_0 - \overline{x}| < \gamma,$ $\lim_{t \to \infty} x_t = \lim_{t \to \infty} f^t(x_0) = \overline{x}$ Ex. $X_{t+1} = \frac{1}{2} X_t$ has a locally attracting sol $\overline{X} = 0$. Ex. Xt+1 = 2xt. x=0 is not a locally attracting sol, Def. Z.3 c The equilibrium solution x is locally asymptotically stable if it is both locally attracting and locally stable. Ex. $X_{t+1} = \frac{1}{2} x_t$ has a locally stable attracting solution $\overline{X} = 0$.

JA. Attracting means that in the limit, Stable means that it a vector starts within distance S, it stays within dist 2 if a frajectory starts with in dist Y, then it Converges to the equilibrium.